NEW SYNTHESES OF α-OXIMINO-α-HALOKETONES : REACTIONS OF α-HALOKETONES WITH ALKYL THIONITRITES

Yong Hae Kim and Sun Ho Jung

Department of Chemistry, The Korea Advanced Institute of Science and Technology, P.O. Box 150 Chongyangni, Seoul, Korea

Summary : α -Oximino- α -haloketones were readily synthesized in good yields by treating α -haloketones with alkyl thionitrites under mild conditions.

Since a quite stable tertiary butyl thionitrite¹⁾ was prepared by a simple reaction of tertiary butyl thiol with an equivalent amount of dinitrogen tetroxide, intensive studies on tertiary butyl thionitrite chemistry for organic syntheses such as unsymmetrical disulfides²⁾, N-(t-alkylthio)-p-benzoquinone imines³⁾, thiolsulfones⁴⁾, and deaminations⁵⁾ have been reported.

We now have found that various α -haloketones reacted readily with alkyl thionitrites under mild conditions to afford the corresponding α -oximino- α -haloketones in good yields as shown in eq. 1.

$$\begin{array}{c} H^{+} \\ R-C-CH_{2}C1 + R'-S-N=0 & H^{+} \\ \hline 0-25^{0}C & NO \\ \hline NO & NOH \\ \end{array}$$

The α -oximino- α -haloketones have been known to be biologically active compounds such as biocides and fungicides⁶) and also an intermediate for the synthesis of amino alcohols⁷). Although nitrosyl chloride⁸) or alkyl nitrites⁹) were reported to be used for the syntheses of oximes, alkyl thionitrites appear to be better reagents for the nitrosation due both to the more facile cleavage of sulfur-nitrogen bond than that of oxygen-nitrogen bond of nitrites and also to the better leaving group of the thiolate moiety (RS⁻) than alkoxy group (RO⁻) in the nitrosation step. Indeed, tertialy butyl thionitrite reacted with chloromethyl ketone to give a better yield of the oxime than nitrites^{9a}.

A solution of tertiary butyl thionitrite¹⁾ (1.33 g, 11.1 mmole in anhydrous ether: 2 ml) was added onto a tertiarybutyl chloromethyl ketone solution (1.00 g, 7.4 mmole, anhydrous ether solution containing HCl gas: 15 ml) at 25° C for ca. 20 min. with stirring. The reaction mixture was then kept for 3 h with good stirring. The solution was concentrated and then solidified by addition of n-hexane (3.0 ml). The crude solid was recrystallized from carbon tetrachloride-chloroform (4:1) to give α -oximino- α -chloro butyl ketone (1.03 g, 85%) which was identified by its ¹H nmr (ppm. CDCl₃; 8.9, s, =NOH; 1.1, s, -CMe₃) and IR spectra, and elemental analysis (calc. C:44.05%, H:6.16%, N:8.56%, obs. C:44.26%, H:6.09%, N:8.65%). The results obtained are summarized in Table 1.

Run	R	Х	R'	R'SNO RCOCH ₂ X	Reactn. Time(h)	Yield ^{a)} (%)	m.p.(⁰ C)
1	Ме	C1	Me ₃ C	2	3	82	102-3
2	l1e	Cl	Me ₃ C	1.5	3	82	
3	Ме	Br	Me ₃ C	2	3	43	103-4
4	Me	C1	Me(CH ₂) ₃	2	3-48 ^C	20 ^d	
5	Me(CH ₂)3	C1	Me ₃ C	1.5	3	95 ^b	
6	Me ₃ C	C1	Me ₃ C	1.5	3	85(95) ^b	131-2
7	Ph-OCH ₂	C1	Me ₃ C	1.5	3	95 ^b	166-7
8	Ph-CH ₂	C1	Me ₃ C	1.5	3	95 ^b	162-4
9	Ph	C1	Me ₃ C	1.5	3-48 ^C	20	132-3
10	Ph	Br	Me ₃ C	1.5	3-48 ^C	10	

Table 1. Syntheses of α -oximino- α -haloketones

a) Isolated yield. b) Yield determined by 1 H nmr spectra. c) The yields were same after 3 h or 48 h reaction. d) Ca. 70% of starting material of α -chloromethyl ketone and n-butyl disulfide were obtained after 48 h reaction along with the oxime.

In the case of α -bromoketones (Runs 3 and 10), the yields of oximes were low. When n-butyl thionitrite was used as the nitrosation reagent instead of t-butyl thionitrite, the yield of oxime was also low (Run 4) due to its instability, where the thionitrite decomposed readily to the corresponding di-n-butyl disulfide $^{10)}$ during the reaction. The reaction appears to be initiated by forming nitroso compound intermediate, which converts quickly to the oxime by a proton migration.

Acknowledgment

The generous supportsfor this investigation by a research grant from Korean Trades Scholarship Foundation(KTSF) are gratefully acknowledged.

References

1)	a) S. Uae,	, D. Fukusnima,	, and Y.H. Kim,	chem. Commun.	, 407 (19//).	
	b) S. Oae,	, Y.H. Kim, and	l D. Fukushima,	J. Chem. Soc.	Perk.	I, 1978, 9	913.
2)	S. Oae, Y.	H. Kim, D. Fuk	ushima, and T.	Takata, Chem.	Lett,	893 (1977)).

- 3)
- 4)
- 5)
- S. Oae, Y.H. Kim, D. Fukushima, and T. Takata, <u>Chem. Lett</u>, 893 (1977).
 Y.H. Kim, K. Shinhama, and S. Oae, <u>Chemistry Lett</u>, 1077 (1979).
 Y.H. Kim, K. Shinhama, and S. Oae, <u>Tetrahedron Lett</u>, 4519 (1978).
 Y.H. Kim, K. Shinhama, and S. Oae, <u>Tetrahedron Lett</u>, 4519 (1978).
 a) D. Bertin, J. Perronnet, and A. Teche, <u>CA</u>, 76, 3550; (1972): Ger. Offen. 2,108,136.
 b) D. Bertin, J. Perronnet, and A. Teche, <u>CA</u>, 76, 38054x(1972): Ger. Offen. 2,225,495.
 a) N. Levin and W.H. Hartung, J. <u>Org. Chem. 7</u>, 408 (1942).
 b) N. Levin and W.H. Hartung, <u>Org. Syntheses</u>, 24, 25 (1944).
 H. Rheinboldt and O. Schmitz-Dumont, <u>Ann.</u>, 444, 113 (1925).
 a) H. Grabinger and R. Sehring, <u>CA</u>, 77, 151479d (1972): Ger. Offen. 2,111,459.
 b) O. Touster, "Organic Reactions", 7, 327 (1967).
 J. Barrett, D.F. Debenham and J. Glouster, <u>Chem.</u> Commun., 248 (1965). 6)
- 7)
- 8)
- 9)
- 10)

(Received in Japan 11 April 1981)